

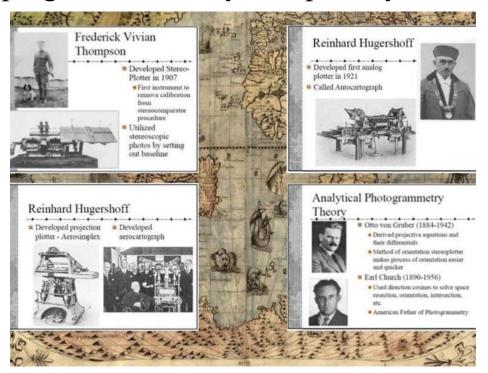
Comparative Accuracy Evaluation Between RTK (CORS) And PPK Aerial Surveying Approaches

By: VOEUN Sothea

Co-author: HENG Tong, OENG Eavhong
Faculty of Land Management and Land Administration,
Royal University of Agriculture,
Phnom Penh, Cambodia.

Contact information:

\(\subset\): 855-10-273-637

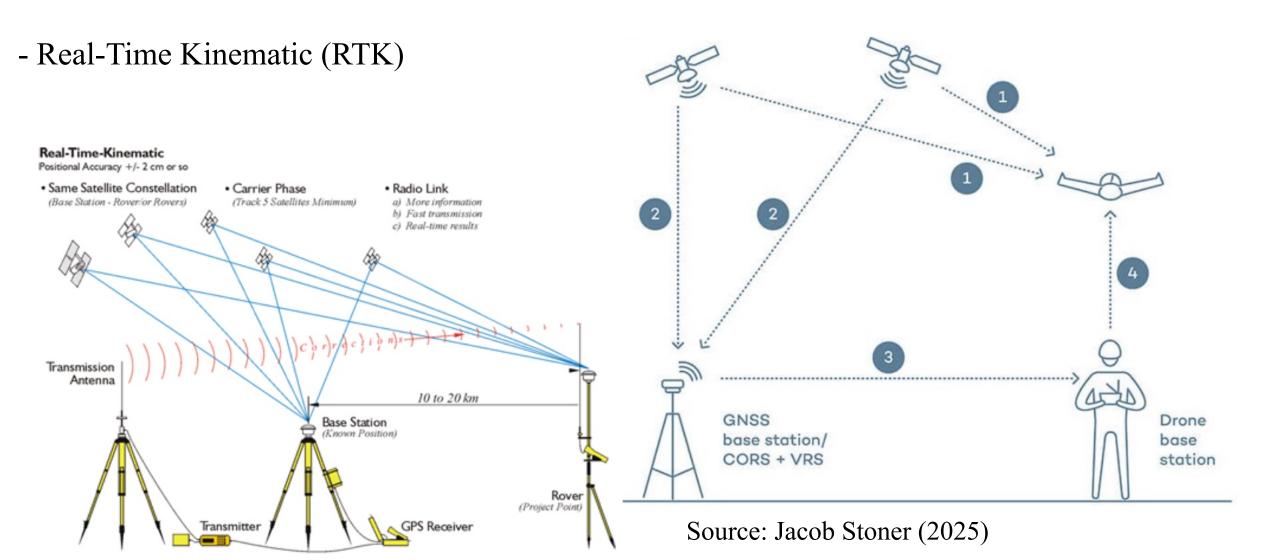

☑: voeunsothea.vst@gmail.com

Content

- Introduction to Aerial Mapping/Photogrammetry
- Study Area
- Surveying Methods
- Surveying Equipment
- Diagram Workflow
- Data Acquisition
- Data Processing
- Findings
- Conclusion

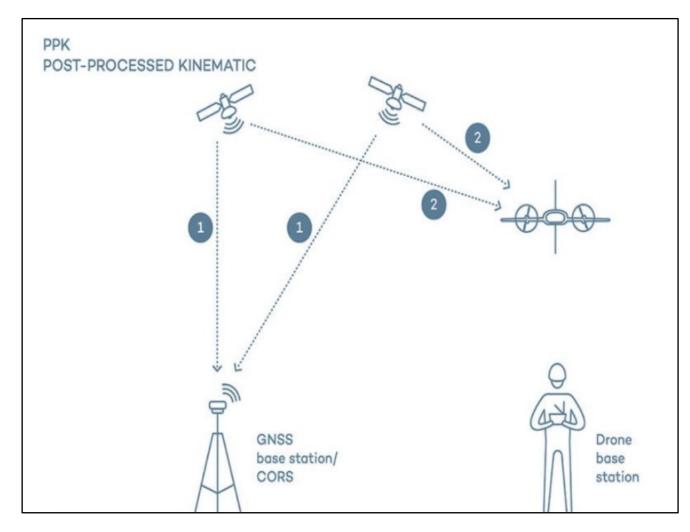
Introduction to Aerial Mapping/Photogrammetry

- -In the 19th century, there was a glimpse of photogrammetry in human history.
- In 1849, Aimé Laussedat was named the "Father of Photogrammetry" as he initially used the terrestrial photograph for topographic map compilation.
- A year later, in 1958, Aimé Laussedat proved his successful experiment of aerial photography by using a string of kites and in 1862 by ballon. In 1864 the concept of using photograph for mapping was officially accepted by the Science Academy in Madrid City (Marky, nd).



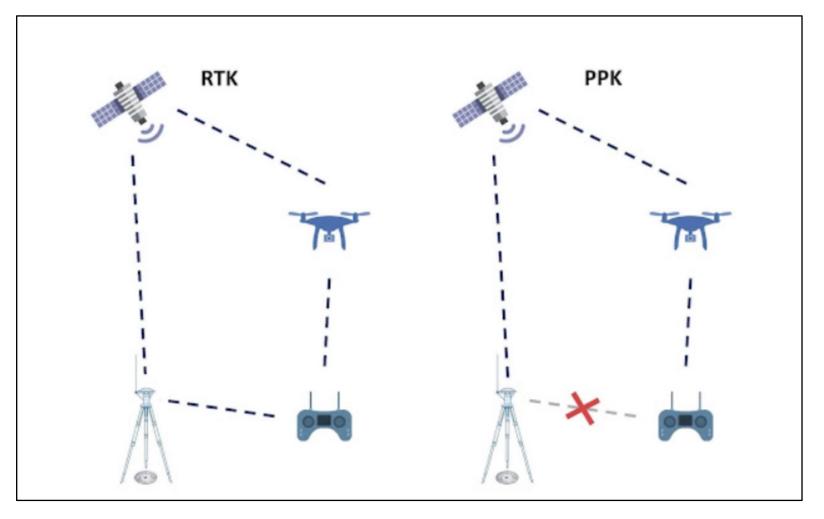
Study Area

- The surveying has been taking place at 7NG Area, Akreiy Ksatr Municipality, Kandal Province, covering 24.38 hectares of land.


Surveying Methods

Source: GPS for Land Surveyors

Surveying Methods (Cont)


- Post-Processed Kinematic (PPK)

Source: Jacob Stoner (2025)

Surveying Methods (Cont)

- Overall, what is the distinction between RTK and PPK?

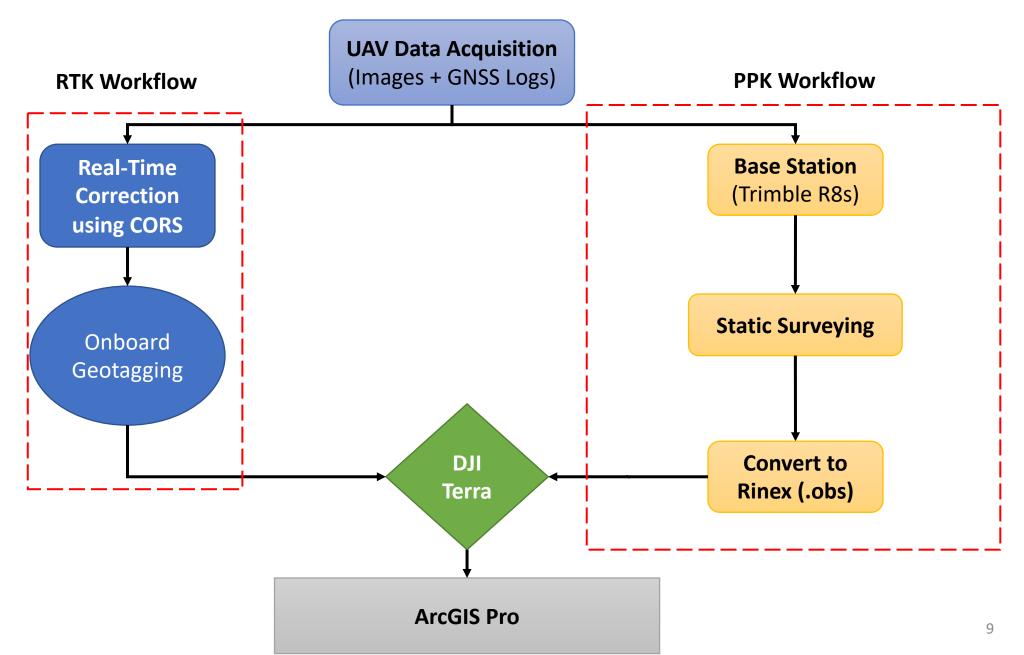
Source: DronEng Drones and Engineering (2024)

Surveying Equipment

UAV: DJI M350 RTK Enterprise with L2 Sensor

DGPS: Trimble R8s

CORS: Khmer GEONET


DJI M350 RTK Enterprise

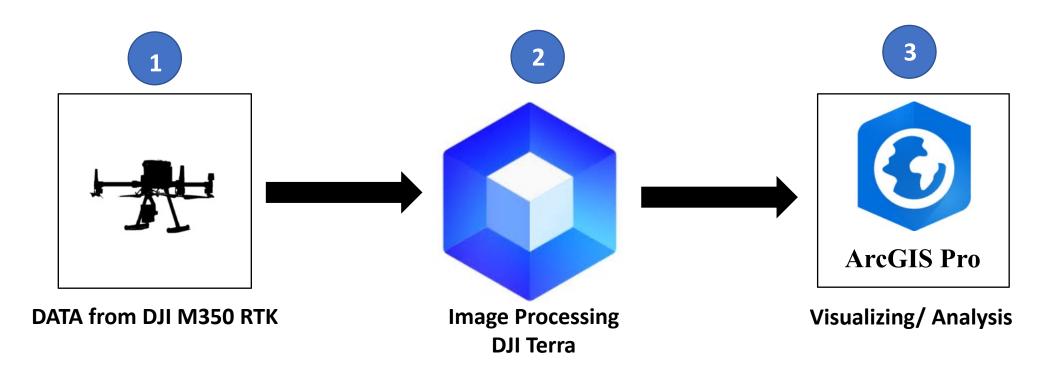
Khmer GEONET SUPPORTING YOUR CM-LEVEL PRECISE POSITIONING IN CAMBODIA The National CORS Network Real-time positioning service How to register Using GNSS observation data collected at these The General Department of Cadastre and Currently Khmer GEONET is in a test phase, and CORS, GDCG provides correction data for registered GNSS users to achieve a few cm level Phnom Penh area, and in Siem Reap and Stung

Diagram Workflow

Data Acquisition

Base Setup

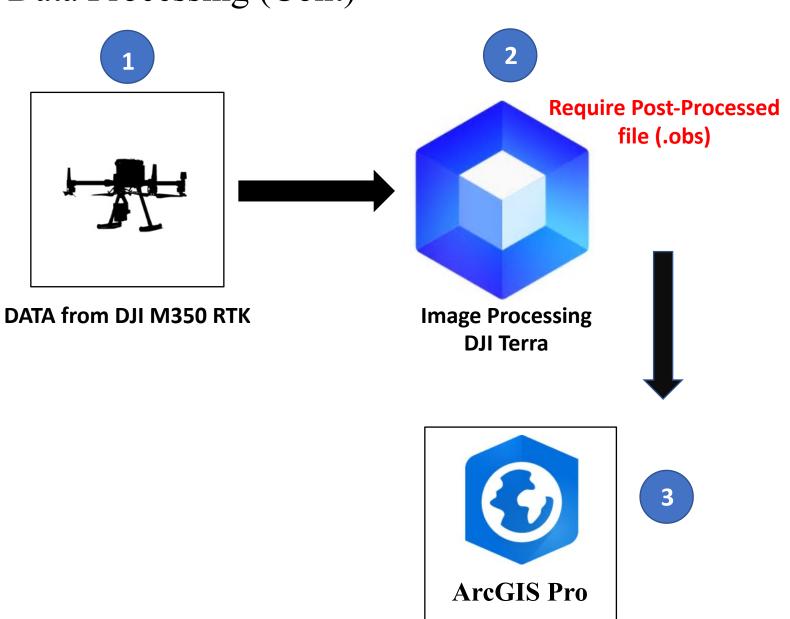
Drone Setup


GCPs&CPs Surveying

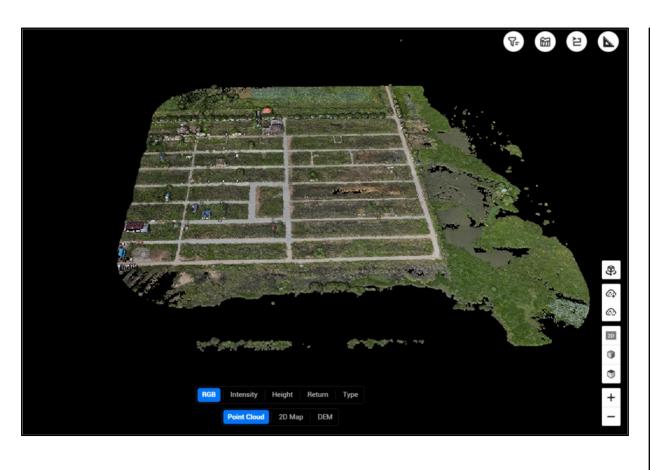
Base Static Surveying

Data Processing

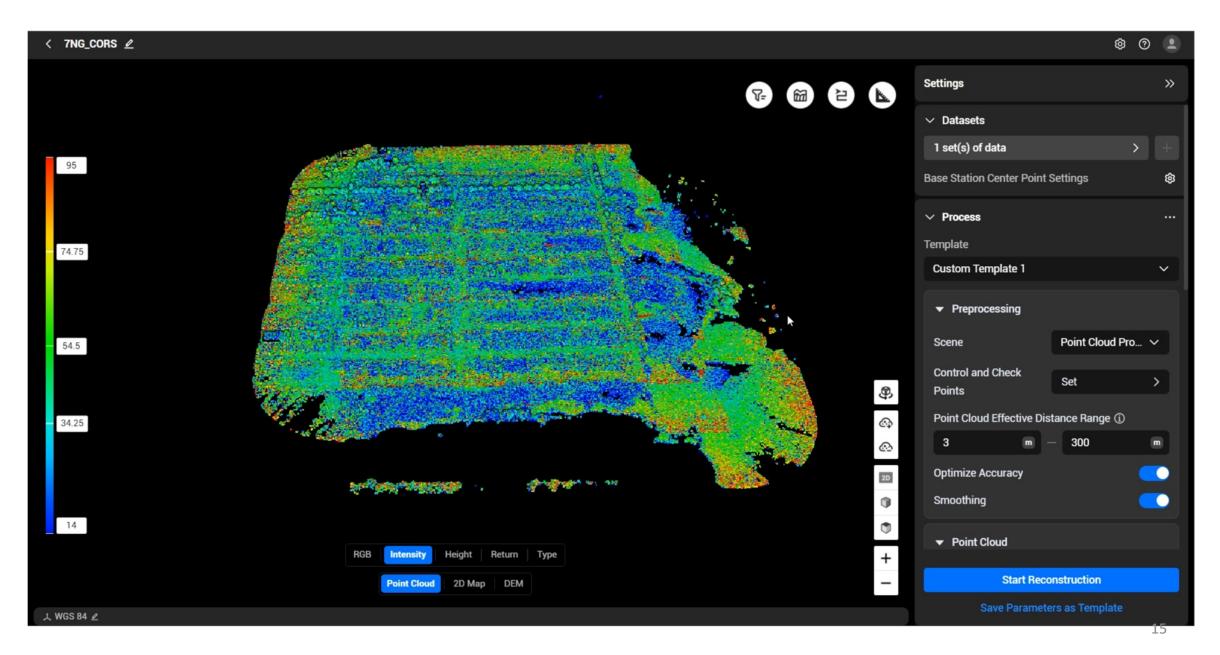
- Real-Time Kinematic (RTK)


With the RTK method, users can obtain accurately georeferenced drone data that can be processed in DJI Terra without concerns about uncorrected positional errors by following these simple steps.

Data Processing (Cont)


- Post Processing Kinematic (PPK)

Unlike RTK, the PPK workflow requires an additional processing step, where GNSS data from the drone and the static base station are combined to generate corrected geotagged photos.


Findings

- LiDAR Products: Point Cloud, 2D Map, and DEM

(3)

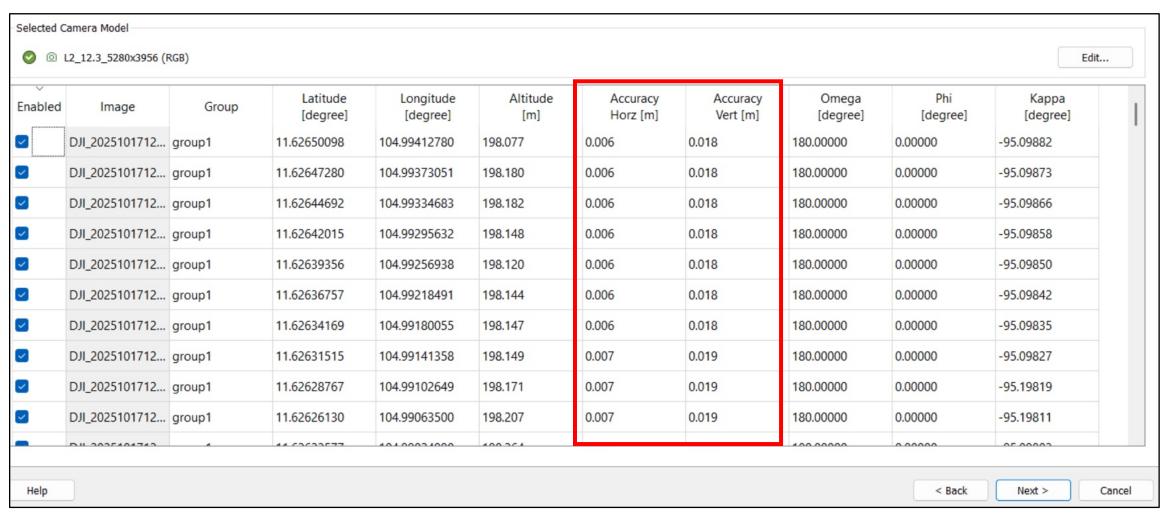
(4)

(5)

- The accuracy of the two methods is measured through the RMSE value. The smaller the value is, the accurate it will be.
- According to the ASPRS (2024), the formula can be followed:

$$RMSE_{X=}\sqrt{\frac{1}{n}(X_{i(map)} - X_{i(surveyed)})^2}$$
 (1)

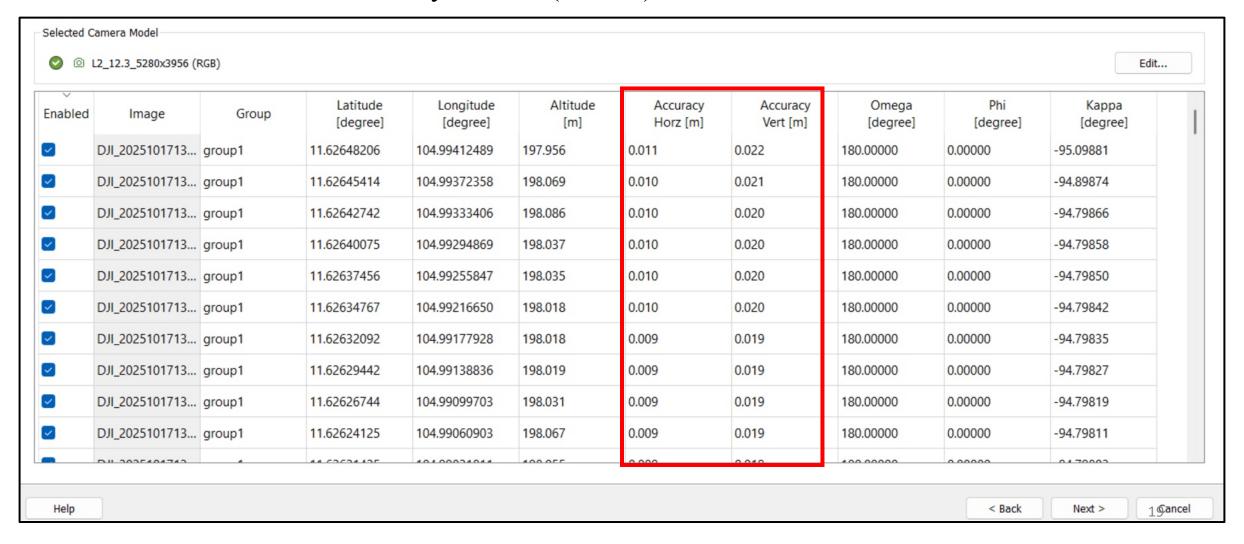
$$RMSE_{Y} = \sqrt{\frac{1}{n} (Y_{i(map)} - Y_{i(surveyed)})^2}$$
 (2)

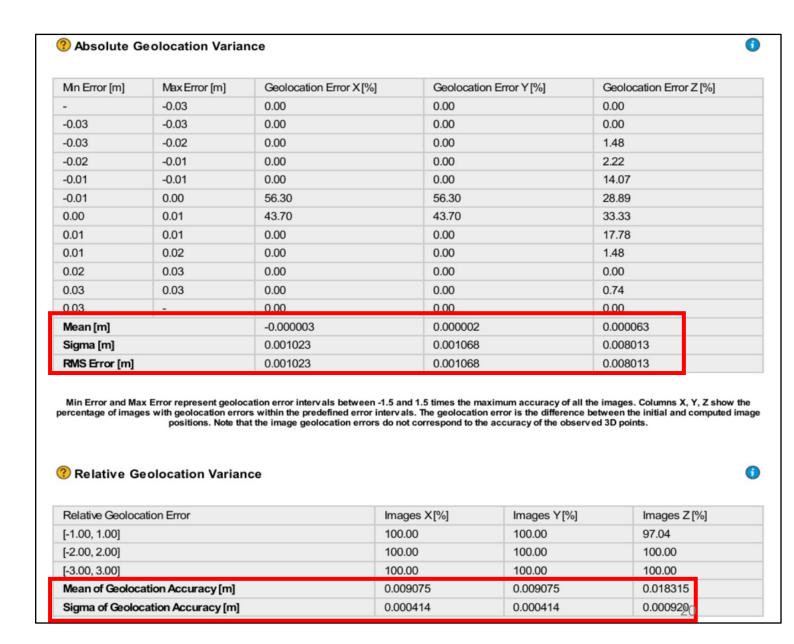

RMSE_Z =
$$\sqrt{\frac{1}{n}(Z_{i(map)} - Z_{i(surveyed)})^2}$$

$$RMSE_{H} = \sqrt{RMSE_X^2 + RMSE_Y^2}$$

$$RMSE_{T} = \sqrt{RMSE_{H}^{2} + RMSE_{Z}^{2}}$$

Where RMSE_X, RMSE_Y, and RMSE_Z are the root mean square errors in X, Y, and Z axes, respectively. RMSE_H is the horizontal positional error, while RMSE_T is the overall positional error. $X_{i \, (map)}$, $Y_{i \, (map)}$, and $Z_{i \, (map)}$ are the coordinates derived from the orthomosaic image. In contrast, $\underline{X}_{i \, (surveyed)}$, $Y_{i \, surveyed)}$, and $Z_{i \, (surveyed)}$ are the coordinates obtained from DGPS surveying.


Horizontal and Vertical Accuracy - PPK


Absolute Geolocation Variance and Relative Geolocation Variance - PPK

Horizontal and Vertical Accuracy – RTK (CORS)

Absolute Geolocation Variance and Relative Geolocation Variance – RTK (CORS)

- The accuracy of the two methods is measured through the RMSE value. The smaller the value is, the accurate it will be.

Surveying Method	RMSE X (m)	RMSE Y (m)	RMSE Z (m)
PPK	0.000179	0.000168	0.000168
RTK-CORS	0.001023	0.001068	0.008013

Accuracy Statistics of the UAV-derived and Surveyed Points (GCPs and CPs) - PPK									
Orthomosaic-derived Values		Surveyed GCPs/CPs Values			Residual Error				
Poit ID	Easting - E (m)	Northing - Y (m)	Easting - Z (m)	Easting - E (m)	Northing - Y (m)	Easting - Z (m)	ΔE (m)	ΔY (m)	ΔZ (m)
GCP1	499278.172	1285155.602	10.283	499278.201	1285155.567	10.287	-0.029	0.035	-0.004
GCP2	499028.548	1285084.208	10.225	499028.552	1285084.245	10.228	-0.004	-0.038	-0.003
GCP3	499088.598	1285030.259	10.073	499088.579	1285030.141	10.078	0.018	0.118	-0.005
GCP4	499282.931	1285097.819	9.998	499282.919	1285097.881	10.010	0.012	-0.062	-0.012
					Sur	n	-0.003	0.053	-0.024
					Mean Er	ror (m)	-0.0008	0.0133	-0.0060
				Standard Deviation (m)		0.0212	0.0808	0.0041	
				RMSE (H,V) (m)		0.0735		0.0070	
				RMSETotal (m)		0.074			
CP1	499268.815	1285146.080	9.765	499268.849	1285145.831	9.768	-0.034	0.248	-0.003
CP2	499231.449	1285172.915	9.651	499231.539	1285172.929	9.656	-0.090	-0.014	-0.005
CP3	499045.188	1285157.192	9.474	499045.171	1285157.199	9.581	0.017	-0.007	-0.107
CP4	499089.435	1285003.397	9.759	499089.542	1285003.412	9.762	-0.107	-0.015	-0.003
					Sur		-0.106	0.227	-0.115
				Mean Error (m)		0.027	0.057	-0.029	
			Standard Deviation (m)		0.0566	0.1304	0.0517		
				RMSE (H,V) (m)		0.1443		0.0536	
			RMSETotal (m)		0.1539				

Accuracy Statistics of the UAV-derived and Surveyed Points (GCPs and CPs) - RTK (CORS)									
Deit ID	Orthomosaic-derived Values			Surveyed GCPs/CPs Values			Residual Error		
Poit ID	Easting - E (m)	Northing - Y (m)	Easting - Z (m)	Easting - E (m)	Northing - Y (m)	Easting - Z (m)	ΔE (m)	ΔY (m)	ΔZ (m)
GCP1	499278.108	1285155.673	10.444	499278.201	1285155.567	10.287	-0.093	0.106	0.157
GCP2	499028.688	1285084.139	10.535	499028.552	1285084.245	10.228	0.135	-0.106	0.307
GCP3	499088.590	1285030.248	10.317	499088.579	1285030.141	10.078	0.011	0.107	0.239
GCP4	499282.976	1285097.829	10.221	499282.919	1285097.881	10.010	0.057	-0.052	0.211
				Sur	m	0.110	0.055	0.916	
					Mean Er	ror (m)	0.0275	0.0139	0.2289
				Standard De	viation (m)	0.0954	0.1094	0.0625	
				RMSE (H,V) (m)		0.1295		0.2352	
				RMSETotal (m)		0.2685			
CP1	499268.878	1285145.680	9.790	499268.849	1285145.831	9.768	0.029	-0.151	0.022
CP2	499231.600	1285172.800	9.780	499231.539	1285172.929	9.656	0.061	-0.129	0.124
CP3	499045.230	1285157.107	9.585	499045.171	1285157.199	9.581	0.059	-0.092	0.004
CP4	499089.650	1285003.550	9.778	499089.542	1285003.412	9.762	0.108	0.138	0.016
					Sur	m	0.257	-0.234	0.166
				Mean Error (m)		0.064	-0.058	0.041	
				Standard Deviation (m)		0.0326	0.1332	0.0555	
				RMSE (H,V) (m)		0.1472		0.0635	
			RMSETotal (m)		0.1603				

Conclusion

- The RMSE Total values obtained from PPK are smaller than the RMSE Total values obtained from RTK (CORS). These values were obtained from the coordinates of surveyed points (GCPs and CPs).
- Therefore, PPK yields better results than RTK, as evidenced by the accuracy indicators.
- For challenging and low-internet connection areas, PPK is an appropriate method to adopt.

Conclusion (Cont)

RTK (Real-Time Kinematic)	PPK (Post-Processing Kinematic)
High, but depends on real-time signal	Very high and more consistent
Faster, immediate geotagging	Slower due to post-processing
Can fail with signal loss	Highly reliable, independent of live signal
Yes (NTRIP/Base Radio)	No live connection required
Strong mobile/radio coverage	Base station setup + logging
Quick surveys with good signal	High-precision surveys or challenging environments
No	Yes
Medium (if signal unstable)	Low (post-processed corrections)
	High, but depends on real-time signal Faster, immediate geotagging Can fail with signal loss Yes (NTRIP/Base Radio) Strong mobile/radio coverage Quick surveys with good signal No

References:

- ASPRS (2024). ASPRS Positional Accuracy Standard Edition2 Version2.

 https://www.asprs.org/wp-content/uploads/2024/05/April24_2024-Yearbook.pdf?utm_source=chatgpt.com
- Engenharia, D. D. E., & Engenharia, D. D. E. (2024b, July 16). Aerolevantamento PPK: você conhece essa técnica? DronEng. *DronEng Mapeamento Aéreo com Drones*. https://blog.droneng.com.br/aerolevantamento-ppk-voce-conhece-essatecnica/
- Marky. (n.d.). *05 Histoty of photogrammetry*. Scribd. https://www.scribd.com/document/370801446/05-Histoty-of-Photogrammetry
- Stoner, J. (2025, April 30). What is RTK (Real-Time Kinematic) & How Does it Work? Fly Eye. Fly Eye. https://www.flyeye.io/drone-acronym-rtk/

Thank you for your attention!